
NASA-CR-203405

A Fast Multilevel Implementation

of Recursive Spectral Bisection

for Partitioning Unstructured Problems

Stephen T. Barnard 1 and Horst D. Simon 2

Report RNR-92-033. November 1992

N/ A
National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035

ARC 275a (Feb 81)

A Fast Multilevel Implementation

of Recursive Spectral Bisection

for Partitioning Unstructured Problems

Stephen T. Barnard 1 and Horst D. Simon 2

Report RNR-92-033, November 1992

NAS Systems Division

Applied Research Branch

NASA Ames Research Center, Mail Stop T045-1

Moffett Field, CA 94035

Abstract. Unstructured meshes are used in many large-scale

scientific and engineering problems, including finite-volume meth-

ods for computational fluid dynamics and finite-element methods

for structural analysis. If unstructured problems such as these are

to be solved on distributed-memory parallel computers, their data

structures must be partitioned and distributed across processors;

if they are to be solved efficiently, the partitioning must maximize

load balance and minimize interprocessor communication. Recently

the recursive spectral bisection method (RSB) has been shown to be

very effective for such partitioning problems compared to alterna-

tive methods. Unfortunately, RSB in its simplest form is expensive.

In this report we describe a multilevel implementation of RSB that

attains about an order-of-magnitude improvement in run time on

typical examples.

1Numerical Aerodynamic Simulation (NAS) Systems Division, Mail Stop
T045-1, NASA Ames Research Center, Moffett Field, CA 94035-1000
(barnard@nas.nasa.gov). This author is an employee of Cray Research, Inc.

2Numerical Aerodynamic Simulation (NAS) Systems Division, Mail Stop
T045-1, NASA Ames Research Center, Moffett Field, CA 94035-1000 (si-

mon@nas.nasa.gov). This author is an employee of Computer Sciences Cor-
poration. This work is supported through NASA Contract NAS 2-12961.

1 Introduction

Unstructured meshes are used in several large-scale scientific and engineering

problems, including finite-volume methods for computational fluid dynamics

and finite-element methods for structural analysis. If unstructured problems

such as these are to be solved on distributed-memory parallel computers,

their data structures must be partitioned and distributed across processors; if

they are to be solved ej_ciently, the partitioning must maximize load balance

and minimize interprocessor communication. Recently, the recursive spectral

bisection method (RSB) [24] has been shown to be very effective for such

partitioning problems compared to alternative methods. Unfortunately, RSB

in its simplest form is expensive. We shall describe a multilevel version of

RSB that attains about an order-of-magnitude improvement in run time on

typical examples.

Since its introduction, RSB has found very rapid acceptance as an effec-

tive method for partitioning unstructured problems in variety of applications

situations. Hammond [9] considers the implementation of an unstructured

grid Euler solver on the Connection Machine 2, and found that RSB followed

by cyclic palrwise exchange to be the best mapping scheme for the CM-2.

Johan [11] uses RSB to partition large three dimensional finite element prob-

lems for the CM-2 and CM-5 and obtains excellent performance results. He

also discusses a data-parallel implementation of RSB on the CM-2. On the

Intel iPSC/860 Venkatakrishnan et al. [27] show that RSB yields the best

performance results when combined with a parallel Euler solver for unstruc-

tured grids. Finally, Das et al. [2] use RSB for an efficient partitioning of

three dimensional problems on the 512-processor Caltech Delta Machine, and

are considering making RSB part of a software system for automatic parti-

tioning and manipulation of unstructured problems. Another comparison of

different partitioning methods is given by Williams [28].

There is considerable theoretical evidence that spectral bisection is in a

certain sense an optimal algorithm for the graph partitioning problem. Mo-

bar [17] has summarized earlier work and given some bounds on the edge

counts for spectral bisection. Pothen et al. [23] derived additional bounds,

and Hendrickson and Leland [10] generalized this work by considering higher

eigenvectors and more general partitioning problems. In spite of these good

theorectical foundations, it has not yet been completely established that RSB

is indeed the best possible algorithm in all practical situations. Alternatives

are Faxhat's greedy algorithm [4, 5], the geometric approach of Teng [26]

and of Miller et al. [16], spectral paxtitionings based on higher eigenvectors

resulting in tetra- or octasection as suggested in [10], or methods such as sim-

ulated annealing [18] (for a recent detailed study, see the thesis by Mansour

[14]).
The implementation of RSB requires the computation of the smallest non-

trivial eigenvector of the Laplacian matrix associated with the graph of the

problem. The Laplacian matrix is a sparse, symmetric, positive semidefinite

matrix and of the same order as the problem. In a previous implementation

[24] this eigenvector was computed with the unfactored Lanczos algorithm.

Here we propose a considerably faster algorithm for computing the eigen-

vector based on a combination of some powerful numerical techniques: a

multilevel algorithm, and Rayleigh quotient iteration [21, 22] combined with

SYMMLQ [19] for the eigenvector extraction.

The use of a multilevel algorithm for the computation of an eigenvec-

tot of a general sparse matrix is new computational technique in its own

right, independent of the partitioning issue. Multigrid methods for eigen-

value problems have been discussed previously by McCormick and his col-

laborators [15, 1, 13], but not for unstructured grids. Inner-outer iterations

for eigenvalue problems are discussed in the literature; some examples axe the

work of Lewis [12] and Szyld [25]. Generally these inner-outer iterations have

not been as widely accepted as a method for eigenvalue computation as the

Lanczos algorithm. By merging the two approaches we can take advantage of

the best features of both: the multigrid scheme quickly provides a coarse ap-

proximation to the desired eigenvector, and the inner-outer iteration scheme

converges rapidly, once provided with a reasonable starting vector.

We also propose a new scheme for coarsening an existing unstructured

general sparse problem. Our algorithm is based on the concept of maximal

independent sets. Related, but different, approaches are "sparsification" [3]

(i.e., the removal of edges from the graph) or "graph contraction" [14] (i.e.,

the merging of vertices). What both approaches have in common with the

coarsening proposed here is that some fundamental graph property is inher-

ited by the smaller graph (i.e., smaller number of vertices or edges or both),

and related unknown properties are computed faster since only a smaller

dataset is considered.

Section 2 defines the partitioning problem and reviews the RSB method.

Section 3 then introduces the multilevel approach to RSB and describes the

2

iiii !_I_

multilevel method in detail. The following issues are addressed: contracting

the grid by selecting successive maximal independent sets of vertices and con-

necting these vertices into a coarser graph, finding the eigenvectors efficiently,

and interpolating eigenvectors from coarser to finer graphs. Section 4 com-

pares the performance of the multilevel method to the original single-level

method. Finally, we draw some conclusions and discuss our plans to apply

the multilevel RSB method to dynamic repartitioning of adaptive meshes.

2 Partitioning

Unstructured meshes are represented as undirected graphs using sparse-

matrix data structures. The algorithms that operate on these meshes typi-

cally involve the repeated application of the same basic computation at each

vertex of the graph, requiring data associated with neighboring vertices. For

simplicity we assume that a unit amount of work is associated with each

vertex3 Before a problem using an unstructured mesh can be solved on a

parallel, distributed-memory computer, the vertices of the graph must be

partitioned into subsets associated with each processor. Furthermore, these

subsets must be of very nearly equal sizes (i.e., equal numbers of vertices)

to achieve a good load balance, and the number of edges connecting the

subgraphs must be minimized to avoid excessive communication between

processors.

Given an undirected graph G = (V, E), the partitioning problem is to

find a set of disjoint subsets of V, P = {V_), satisfying certain conditions

related to load balance and communication. To optimize load balance one

must minimize the maximum size of the vertex subsets: max_ IVil. To opti-

mize interprocessor communication one must minimize the sizes of the cut

sets of edges: _],dlCidl, where Ci,j = {(v,w) [v E Vi,w E Vj}. Depend-

ing on the topology of the interprocessor communication network, the cost

of communication is also affected by the distance that the data must travel

(i.e., the number of wires that must be traversed). However, most mod-

ern parallel computers employ cut-through routing, which makes the cost of

communication nearly independent of the distance between communicating

1This assumption may not be strictly valid; for example, vertices on the boundary of
a fluid-dynamics mesh may require significantly more work. The partitioning techniques
to be discussed can be usually extended to such situations in a straightforward way.

3

processors. Becauseof this fact, and because there are many varieties of

network topologies, we chose to ignore this component of the communication

cost. Numerical studies on the iPSC/860 that demonstrate that this is a

reasonable assumption are reported in [27].

The recursive spectral bisection method approaches the partitioning prob-

lem with a graph bisection strategy developed by Pothen, Simon, and Liou

[23]. The method is based on computing the eigenvector corresponding to

the second smallest eigenvalue of the Laplacian matrix L(G) -- (l_,j) of the

graph G, defined as:

-1 if (vi, vj) E E
li,j = deg(vi) if i = j

0 otherwise.

It is easily seen that L(G) = D - A, where A is the adjacency matrix

of the graph and D is the diagonal matrix of vertex degrees. Traditionally,

spectral properties of the adjacency matrix have been investigated by graph

theorists. However, Mohar [17] has gathered convincing evidence that the

Laplacian matrix is a more useful tool for the study of spectral properties of

graphs. One of the reasons is that L(G) is closely related to the Laplacian

operator. Specifically, if we consider the standard discrete five point Lapla-

cian on a rectangular grid, then the discrete Laplacian and the Laplacian

matrix coincide if Neumann boundary conditions are imposed. Thus one can

consider the Laplacian matrix as a generalization of the discrete Laplacian

operator for general graphs. This relationship is explored in more detail in

[23].

The Laplacian matrix has a number of intriguing properties, some of

which are listed here. For details and proof see [17]. First note that the

bilinear form associated with the Laplacian matrix can be written as follows:

(v,w)eE

From this it follows that Laplacian matrix is positive semidefinite and its

smallest eigenvalue is zero, with an associated eigenvector of all ones. If G

is connected then the second smallest eigenvalue As is positive. The eigen-

vector xs associated with As (called the Fiedler vector) contains important

directional information about the graph (see [6, 7, 8]): the components of xs

are weights on the corresponding vertices of G such that differences of the

components provide information about the distances between the vertices.

Sorting the vertices by the components of the Fiedler vector, therefore, ef-

fectively orders the graph in a way that puts vertices "close" to one another.

Another way of deriving a matrix formulation of the graph bisection prob-

lem is as follows. Let us consider only the first partition, and let Ec denote the

set of edges cut by the first partition, i.e. [Ed = {e[e 6 E;e = (vl, v2)ivl 6

V_; v2 6 V2}. Let n = IV[be even and define a partition vector to be a vector

p with components equal to +1 or -1, i.e. p = (+1, -1, -1, +1, -1, -1) T,

with eTp = 0. Here e = (1, 1, 1) T. We can construct the partition induced

by the vector p, by considering the two sets of vertices V1 and V2, correspond-

ing to where the elements of p are +1 and -1, respectively. The orthogonality

condition eTp = 0 assures that there is an equal number of positive and neg-

ative components in p. The key observation is then

4E_ = IILpI[1, (1)

where Ilxlll = EL-1 Ix, I. This follows from the fact that for vertices in V_

which have no neighbors in ½ (and vice versa) the corresponding entry in

Lp is zero, since the entries in each row of the Laplacian matrix sum to zero.

Only entries of Lp corresponding to vertices with neighbors in the other set

are nonzero, and a simple counting arguments yields (1).

Denote the set of all partition vectors as 79 . Then one can show by

minimizing over all (suitably normalized) vectors in Rn:

min E_
pE_ ,eT p=O

- rain IILplI1
p6_, eTp=o

> min lllLpll
-- peT_. ,llpll2=vrff,erp=0

>_ ¼.v/ffl l

(2)

Equation (2) shows that the second eigenvector of the Laplacian matrix min-

imizes a closely related continuous problem. We have thus replaced the

solution of an NP-hard discrete problem, the graph bisection problem, by

the solution of a well understood linear algebra problem, the computation of

an eigenvector. The spectral bisection algorithm choses a partition based on

5

the partition vector closestto the secondeigenvector.In generalthis yields
a good (but not necessarily the best) partition.

The original implementation of RSB in [24] used a modified Lanczos al-

gorithm to compute the Fiedler vectors. To partition a graph into a power-

of-two number of domains, RSB is applied recursively as follows:

1. Compute the Fiedler vector for the graph using the unfactored Lanczos

algorithm.

2. Sort the vertices according to the sizes of the components of the Fiedler

vector.

3. Assign half the vertices to each subdomain.

4. Apply steps 1-3 recursively to each subdomain until the desired number

of partitions is obtained.

The stage that dominates this algorithm is the first step, the computation of

the Fiedler vector.

The next section describes a multilevel technique for computing the Fied-

ler vector much more efficiently. The basic idea is closely related to multigrid

methods (although it differs from conventional multigrid methods in some re-

spects). A series of successively smaller matrices is constructed, each of which

approximates its larger predecessor. At some point the matrix is so small

that the Lanczos algorithm can compute the Fiedler vector of the Laplacian

matrix in a negligible amount of time. This vector is then interpolated into

the next higher level, producing a high grade approximation for the Fiedler

vector for the Laplacian matrix corresponding to this finer level. The in-

terpolated vector is then improved using the Rayleigh Quotient Iteration

algorithm. The process continues until the Fiedler vector for the original
matrix is obtained.

3 Multilevel Partitioning

The multilevel RSB method requires three elements to be added to the basic

single-level RSB algorithm:

• Contraction: Construct a series of smaller graphs that in some sense

retain the global structure of the original large graph.

6

• Interpolation: Given a Fiedler vector of a contracted graph, interpo-

late this vector to the next larger graph in a way that provides a good

approximation to next Fiedler vector.

• Refinement: Given an approximate Fiedler vector for a graph, com-

pute a more accurate vector efficiently.

3.1 Contraction

The first step in contracting the graph G = (V, E) is to select a subset of

vertices, V _ C V, that are evenly distributed over G. We choose V' to be a

mazimal independent set with respect to G. V _ is an independent set with

respect to G if for all v E V _ (v,w) E E =_ w __ Vq V' is a maximal

independent set if the addition of any vertex to V' would make it no longer

an independent set. A maximal independent set can be found very efficiently

with a simple greedy algorithm3

Once V _ has been found we construct the contracted graph G _ = (V _, E')

as illustrated in Figure 1. The solid-colored vertices in Figure 1 are those

chosen as the vertices of the contracted graph. (Note that these vertices do

not comprise a maximal independent set. The construction of the contracted

graph can work with any subset of vertices. A relatively sparse set illustrates

the method more clearly. 3) The basic idea is to grow domains in G around

vertices in V', adding an edge to E _ whenever two domains intersect. We

use a hashing scheme avoid adding redundant edges. To add an edge we

create an index into a hash table by adding the indices of the two vertices

connected by the edge. If the edge already exists at that hash-table location

it is ignored; otherwise, it is inserted into the table. After all vertices in V

have been visited the hash table is converted to a standard sparse-matrix

data structure and the algorithm terminates.

One significant difference between this method and a standard multi-

grid approach is. that we construct dynamically a new series of contracted

2Maximal independent sets not unique. The Multilevel RSB method is only weakly

sensitive to the choice of maximal independent sets, with the quality of the results varying

by a few percent when different sets are used.

3Originally, we selected vertices by simply choosing a set at random, with some specified

probability of selecting any vertex. The maximal independent set works somewhat better

because the vertices in V _ are guaranteed to be distributed evenly over G.

r

(a) First pass. (b) Second pass.

• Vertex selected for the contracted graph.

• Vertex visited and marked.

m -- Edge added to the contracted graph.

Figure l:Constructing a contracted graph.

graphs for every subproblem rather than constructing a single series of con-

tracted graphs to be used thoughout the algorithm. A single series could be

used in the following way: When a partition is subdivided the vertices of its

two components could be projected onto the appropriate contracted graph

and the algorithm could proceed with the associated subgraphs. Unfortu-

nately, a component may become disconnected, but the subgraph it projects

to could be connected. In such a case the Fiedler vector would be incorrect.

By contracting every subproblem independently we ensure that the connec-

tivity of partitions is maintained. It is possible for a bisection to produce

a disconnected subdomaln, but the contraction operation will preserve the

connectivity of each connected component in a subdomain.

3.2 Interpolation

Given a Fiedler vector f' =< f'_ >, i = 1... n' of a contracted graph G',

with n' = [V'[, the interpolation operation constructs an expansion of this

vector, f0 =< f0 >, i = 1...n, that can be used as an approximation for

the Fiedler vector of G. Interpolation consists of two steps: injection and

averaging.

8

function rqi(v, L)
0 *-- vTLv

do

solve (L - OI)x = v

v x/llxll
O ¢-- vTLv

p o2
until p <

return v

Figure 2: Rayleigh quotient iteration

We use information gathered in the contraction operation -- namely, a

mapping from vertices in W to vertices in V. Let this mapping be m(i), i =

1... n _ such that re(i) is the index of the vertex in V from which the ith vertex

in V' was derived during the computation of the maximal independent set.

The injection operation first "seeds" the vector f0 by placing components of
f_ into f0:

f°m(i) = fti, i - 1... n' .

The remaining elements of f0 are set by averaging the elements of their

neighbors that have been set by injection. Since V t is a maximal independent

set with respect to V we can be assured that these components will have such

neighbors.

3.3 Refinement

The Lanczos algorithm works well in the absence of prior information about

the eigenvector, but in this situation it does not effectively take advantage

of a good initial approximation. Therefore, although the Lanczos algorithm

is used as described in [20] to find the Fiedler vector for the smallest graphs,

Rayleigh quotient iteration (RQI) [21, 22] is used to refine the approximate

Fiedler vector for the higher levels.

The Rayleigh quotient iteration algorithm is shown in Figure 2. This

algorithm requires that a linear system be solved in each iteration. Since

function Fiedler(G)

L _ Laplacian matrix of G

if IV] > n then

G' +-- contract(G)

v' .- Fiedler(G')

v _ interpolate(v', L)

v *- rqi(v, L)
else

v _ Lanczos(L)

endif

return v

Figure 3: Recursive procedure to find the Fiedler vector.

we do not want to employ any factorization scheme, we use SYMMLQ [19],

which is an extension of the conjugate gradient algorithm designed to work
for indefinite matrices.

ITQI is started with the interpolated vector as described above, and its

Rayleigh quotient is used as an initial guess for the eigenvalue. Since a very

good approximation to the Fiedler vector already exists and our accuracy

requirements are modest, RQI usually takes only a few steps to convergence.

One of the features of the SYMMLQ implementation is that for very ill-

conditioned matrices SYMMLQ terminates early when a good approximate

eigenvector is found. This early termination of SYMMLQ causes more RQI

steps to be made then one would expect, considering of the cubic convergence

of RQI. However, the total number of matrix vector operations made in all

RQI iterations combined is usually less than ten. Thus the RQI/SYMMLQ

combination has proved to be very efficient for refining the coarse grid ap-

proximation of an eigenvector.

The three steps discussed above -- contraction, interpolation, and refine-

ment - are put together in a recursive, multilevel routine to find the Fiedler

vector of a graph, shown in Figure 3. Note that it is not necessary to ac-

tually construct the Laplacian matrix. Instead, we have modified a sparse

matrix-vector multiplication routine to use the Laplacian matrix implicitly

10

/

i

partitions

SL

time (sec) edges cut

ML

time (sec) edges cut speedup

2 40.4 117 3.97 117 10.2

4 74.7 258 7.14 274 10.5

95.78 11.5466 481 8.3

16 108 758 16.0 770 6.8

32 117 1215 20.4 1199 5.7

64 124 1893 26.2 1863 4.7

128 129 2788 31.5 2798 4.1

Table i: Performance on the Hammond mesh (IV I= 4720, IEI = 13722).

defined by the adjacency information.

4 Performance

Tables 1, 2, 3, and 4 compare the performance of the multilevel partition-

ing algorithm (ML) to the original single-level algorithm (SL) for problems

of various sizes. Hammond is a rather small two-dimensional CFD mesh,

Barth5 is a somewhat larger mesh of the same type, PWT (which stands

for Pressurized Wind Tunnel) is a large finite-element mesh with a toroidal

topology, and IN3C is a very large three-dimensional finite-element mesh. 4

The cutoff for graph contraction (n in Figure 3) is 100 for the Hammond,

Barth5, and PWT problems, and 500 for the IN3C problem.

The quality of the partitions, as measured by the sizes of the cut sets,

is nearly the same for both algorithms. For 128 partitions the ML result is

0.4% worse than the SL result for Hammond, 0.8% better for Barth5, and

2.4% worse for PWT, and 7.1% better for IN3C.

The performance advantage of the multilevel algorithm over the single

level algorithm is dependent on the size of the problem. The speedup for

4The Hammond, Barth5, and PWT problems were run on a Silicon Graphics worksta-

tion with one 20 MHZ IP6 processor and 16 Mbytes of main memory. The IN3C problem

was run on a Silicon Graphics workstation with eight 33 MHZ IP7 processors (although

on one processor was used) and 256 Mbytes of main memory.

11

partitions

16

SL
time (sec)

182
411
534
617

edgescut
181

470

813

1330

ML

time (sec)

11.3

21.2

30.7

41.2

edges cut

164

492

• 808

1375

speedup

16.0

19.4

17.4

15.0

12.532 670 2048 53.4 2131

64 704 3190 68.8 3252 10.2

128 734 4966 88.0 4925 8.3

Table 2: Performance on the Barth5 mesh (]V[= 15606,]E] = 45878).

SL ML

partitions time (sec) edges cut time (sec) edges cut speedup

2 893 423 28.0 376 31.9

4 1533 829 48.1 942 31.9

8 1847 1558 72.4 1684 25.5

16 2055 3091 106 3302 19.4

32 2284 5973 162 6273 14.1

64 2452 9478 203 9790 12.1

128 2559 13222 249 13535 10.3

Table 3: Performance on the PWT mesh (]V] = 36519,]El = 144794).

12

SL ML
partitions time(sec) edges cut time(sec) edges cut speedup

2 2766 2455 152 2366 18.2

4 4985 6383 250 5639 20.0

8 6811 11760 350 10086 19.5

16 8138 18988 461 16955 17.7

32 9141 26696 591 25388 15.5

64 9907 39536 750 36876 13.2

128 10508 56754 933 52732 11.3

Table 4: Performance on the IN3C mesh (IVl = 262620, IEI = 764268).

computing 128 partitions ranges from 4.1 for the smallest problem to 11.3

for the largest. This effect is clearly illustrated in Figures 4, 5, and 6. These

graphs show the average run times of the ML and SL algorithms for each

subproblem. The rightmost point of each curve indicates the time to bisect

the original graph into two subdomains, the next point to the left indicates

the time to bisect these two subdomains into four subdomains, etc. For the

Hammond mesh (Figure 4) the smallest subproblems are smaller than the

cutoff for contracting the graph. Therefore, the Lanczos algorithm is used ex-

clusively to compute the Fiedler vector so SL and ML take the same amount

of time (except for a small additional overhead in ML). For the larger sub-

problems, however, the performance advantage of ML improves because the

multilevel structure is "deeper" and the execution time of Lanczos algorithm

at the coarsest level represents a smaller proportion of the total time.

5 Conclusions and Future Work

In this paper we have combined a number of computational techniques rang-

ing from multilevel methods to discrete graph algorithms to improve the

performance of the recursive spectral bisection algorithm. We have demon-

strated that the multilevel approach yields substantially better performance

with little or no loss of quality in the computed partition. On large prob-

lems we have seen an order of magnitude reduction in the execution time

13

Hammond

,031

21...................i..................._.......................................lO

I;,..;................... .:.....,.......;.......:....................

_lO _ _.•
_'J - ° #- w•" •

¢_ . : s : _/ :
" ,,O • •

._. O_• -:....................

10- ! • i

.................._i_ m_ltilevel t..
- 4-. single

ld i I
L_

I01 10 2 lO 3 10 4 lO s

subproblem size (number of vertices)

Figure 4: Average performance for each subproblem size: Hammond mesh.

Each point indicates the average execution time for solving each subproblem.

10 3'

10 z

•= i0°

Barth5

i0t [""

-?

1001 105

....................................... _.............. _.;a:

• #

...................:.........__...................
• _ : !

...................................... il_ multilevel- 4-. single level

.............. , i

10 2 10 3 10 4

subproblem size (number of vertices)

Figure 5: Average performance for each subproblem size: Barth5 mesh.

. 14

Figure 6:
Tunnel.

10 3

10 2

"_ 1

"_ 10°'

Pressured Wind Tunnel

.- s m

• s
"s

s

.1¢

................... !.................... i...:.,o:.: _

! /.'_ i

oiJ il 'lO-I _ multilevel
- 4-. single level

:

1 1 10 2 10 3 10 4

...

10 5

subproblem size (number of vertices)

Average performance for each subproblem size: Pressured Wind

on workstations. Furthermore, we believe that the combination of multilevel

techniques with RQI and SYMMLQ may be useful in general for computing

eigenvectors of large sparse matrices.

The techniques of grid coarsening and eigenvector interpolation are of

potential use in adapting the RSB algorithm for dynamically changing grids,
such as in problems with adaptive meshes and/or local grid refinement. We

intend to apply the ideas presented here to dynamic repartitioning in the
near future.

Acknowledgements. We would like to thank Niel Madsen for providing

us with the large test problem, Michael Saunders, Stanford University, for
giving us permission to use his SYMMLQ code, Robert Schreiber, RIACS

at NASA Ames Research Center, for suggesting to use maximal independent

sets, and John Gilbert (Xerox PARC), Bruce Hendrickson (Sandia), Rob
Leland (Sandia), and V. Venkatakrishnan (NASA Ames) for stimulating and

helpful discussions about the topic of this paper.

15

References

[1] A. Brandt, S. McCormick, and J. Ruge. Multigrid methods for differ-

ential eigenproblems. SIAM J. Sci. Stat. Comp., 4(2):244 - 260, 1983.

[2]R. Das, D.J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusmay. The

design and implementation of parallel unstructured Euler solver using

software primitives. In AIAA 30th Aerospace Sciences Meeting, 1992.

Paper AIAA-92-0562.

[3]D. Eppstein, Z. Galil, G. Italiano, and A. Nissenzweig. Sparsification -

a technique for speeding up dynamic graph algorithms. In Proceedings

of FOCS '92, 1992.

[4] C. Faxhat. A simple and efficient automatic fem domain decomposer.

Computers and Structures, 28(5):579 - 602, 1988.

[5] C. Farhat. On the mapping of massively parallel processors onto finite

element graphs. Computers and Structures, 32(2):347 - 353, 1989.

[6] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J.,

23(98):298 - 305, 1973.

[7] M. Fiedler. Eigenvectors of acyclic matrices. Czechoslovak Math. J.,

25(100):607 - 618, 1975.

[8]M. Fiedler. A property of eigenvectors of nonnegative symmetric ma-

trices and its application to graph theory. Czechoslovak Math. J.,

25(100):619 - 633, 1975.

[9] S. Hammond. Mapping Unstructured Grid Computations to Massively

Parallel Computers. PhD thesis, RPI, June 1992. RIACS Report 92.14.

[10]B. Hendrickson and R. Leland. An improved spectral graph parti-

tioning algorithm for mapping parallel computations. Technical Re-

port SAND92-1460, UC - 405, Sandia Natl. Lab., Albuquerque, N.M.,

September 1992.

[11] Z. Johan. Data Parallel Finite Element Techniques for Large-Scale Com-

putational Fluid Dynamics. PhD thesis, Stanford University, July 1992.

16

i _ "

[12]

[13]

[14]

[15]

[16]

[17]

[is]

[19]

[2o]

[21]

[22]

[23]

J.G. Lewis. Algorithms for Sparse Matrix Eigenvalue Problems. PhD

thesis, Stanford University, Dept. of Computer Science, 1977.

J. Mandel and S. McCormick. A multilevel variational method for au =

Abu on composite grids. Journal of Comp. Physics, 80(2):442 - 452,
1989.

Nashat Mansour. Physical Optimization Algorithms for Mapping Data

to Distributed-Memory Multiprocessors. PhD thesis, Dept. of Computer

Science, Syracuse University, Syracuse, NY, August 1992.

Stephen F. McCormick. A mesh refinement method for ax --)_bx. Math-

ematics of Computation, 36(154):485 - 498, 1981.

Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen Vava-

sis. Automatic mesh partitioning. 1992.

B. Mohar. The Laplacian spectrum of graphs. Technical report, Dept.

of Mathematics, Univ. of Ljubljana, 61111 Ljubljana, Yugoslavia, 1988.

B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element

equations on concurrent computers. In A. K. Noor, editor, Parallel

Computations and their Impact on Mechanics, pages 209 - 227, New

York, 1986. American Soc. of Mech. Eng.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems

of linear equations. SIAM J. Num. Anal., 12:617 - 629, 1974.

B. Parlett, H. Simon, and L. Stringer. Estimating the largest eigenvalue

with the Lanczos algorithm. Math. Comp., 38:153 - 165, 1982.

B. N. Parlett. The Rayleigh quotient iteration and some generalizations

for nonnormal matrices. Math. Comp., 28(127):679 - 693, 1974.

B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, En-

glewood Cliffs, New Jersey, 1980.

A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM J. Mat. Anal. Appl., 11(3):430 - 452,
1990.

17

[24]

[25]

[26]

[27]

[28]

H. D. Simon. Partitioning of unstructured problems for parallel pro-

cesssing. Computing Systems in Engineering, 2(2/3):135 - 148, 1991.

Daniel B. Szyld. Criteria for combining inverse and rayleigh quotient

iteration. SIAM Journal on Numerical Analysis, 25:1369 - 1375, 1988.

Shang-Hua Teng. Points, Spheres, and Separators, A Unified Geomet-

ric Approach to Graph Partitioning. PhD thesis, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA, August 1991.

V. Venkatakrishnan, H. Simon, and T. Barth. A mimd implementa-

tion of a parallel euler solver for unstructured grids. The Journal of

Supercomputing, 6(2):117 - 127, 1992.

R. D. Williams. Performance of dynamic load balancing algorithms for

unstructured mesh calculations. Technical Report C3P913, California

Institute of Technology, Pasadena, Califronia, June 1990.

18

